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Abstract

Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large
diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes
cavitation can occur, resulting in noise, vibration and rapid deterioration of the valve trim, and do not
allow further operation. Thus, monitoring of cavitation is of economic interest and is very important in
industry.

This paper proposes a condition monitoring scheme using statistical feature evaluation and support
vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control
valve at the pumping stations. The stationary features of vibration signals are extracted from statistical
moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The
SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The
classification validity of this method is examined by various signals acquired from butterfly valves in the
pumping stations. And the classification success rate is compared with that of self-organizing feature map
neural network (SOFM).
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Most pumping stations have evolved to calendar scheduling of maintenance: valves are
maintained on a cyclic basis even if no signs of trouble are detected. However, cyclic scheduling
may leave out components that will fail before their planned service date if signs of deterioration
are not clearly visible at an earlier inspection. A less expensive and more effective valve
maintenance schedule can be implemented only if the selection of valves to be serviced is made on
a justifiable priority-of-need basis. The purpose of the valve monitoring is to provide the means to
do that.
Industrial piping systems can experience severe vibration and noise caused by internal flow of

the conveyed fluid. Valves can result in annoying and even unbearable noise and high vibration
[1]. Engineers typically lavish much attention on pumps and little on valves which is just as
important for the proper functioning of a pumping station. Flow control valves which are the
most important valves in a pumping station, are used to modulate flow by operating in a partly
open position, thus creating a high head-loss or pressure differential between upstream and
downstream locations. Such operation may create cavitation and noise.
Usually, butterfly, ball, cone or plug valves are used for flow control valves, where energy costs

are important. Butterfly valves are popularly used in service in the industrial and water works
pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of
its manipulation. Butterfly valves can be designed for leak-proof shut-off, but leakage is
significant without a resilient seat [2].
When the butterfly valve is used as a flow control valve, cavitation phenomena sometimes occur

in the range of higher flow rate because of the small valve opening. When a liquid passes through
a pipe, the velocity is comparatively low because of the relatively large cross section. As the liquid
passes through a valve seat, its velocity increases. An increase in velocity increases dynamic
pressure, which reduces the static pressure. If the velocity is high enough, the pressure at the valve
seat can drop below the vapor pressure of the liquid and form vapor bubbles. The downstream
static pressure is normally higher than the vapor pressure of the liquid. Therefore, the bubbles or
cavities of vapor implode. When a bubble implodes, all the energy is concentrated into a very
small area. This creates tremendous pressure of thousands of psi in the small area, generating
minute shock waves. These shock waves pound on the solid portions of the valve. Repeated
implosions on a small surface eventually cause fatigue of the metal and wear away this surface.
Fig. 1 shows an example of the pitting corrosion at the rear surface of valve body and valve seat of
nozzle side caused by cavitation at valve opening of 20%. Cavitation is a potential danger,
especially when valves operate at low opening, and may damage the valve very rapidly. It is
suggested that the pitting and erosion is accelerated by simultaneous chemical attack or that the
high impact pressure causes locally high temperatures that accelerate pitting.
Sometimes cavitation can occur, resulting in noise, vibration and rapid deterioration of the

valve trim, and do not allow further operation. Thus, the monitoring of cavitation is of economic
interest. Usually the valve trim is destroyed prematurely, but the valve body and the pipe also can
be affected as far away as 20 diameters downstream of the valve [3].
In the case of two-class classification problems, the main objective is to find a, in general,

nonlinear optimal separating surface between the two classes (cavitation and normal conditions),
starting from a collection (training set) of examples of signals belonging to the two classes. In this
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Fig. 1. Occurrence of pitting corrosion due to cavitation. (a) Rear surface of valve body; (b) valve seat of nozzle side.
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paper, we adopt a new category of universal feed-forward network known as support vector
machines (SVMs) introduced by Vapnik [4]. SVMs, based on statistical learning theory, are a
comparatively recent development, although their origins can be tracked back to the late 1960s
[5,6]. SVMs have been gaining acceptance in the machine learning, computer vision and pattern
recognition communities for their high accuracy and good generalization capability [7]. The main
difference between artificial neural networks (ANNs) and SVMs is in the principle of risk
minimization [8]. In case of SVMs, structural risk minimization principle is used minimizing an
upper bound on the expected risk whereas in ANNs, traditional empirical risk minimization is
used minimizing the error on the training data. The difference in risk minimization leads to better
generalization performance for SVMs than ANNs. The possibilities of using SVMs in machine
condition monitoring application are being considered only recently by Jack and Nandi [9] and
Samanta [10]. However, there are still relatively few ‘real’ engineering applications based on them,
and only a few in the field of process/ condition monitoring [11].
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The goal of this work is to present a cavitation detection scheme based upon SVM for the
butterfly valves in large pumping stations. This paper provides a comparison between the two
classification algorithms, SVMs and ANNs such as self-organizing feature map (SOFM)
networks, and shows results through utilizing the vibration signals of the butterfly valves in
pumping stations with different valve opening conditions. A statistical method is used to extract
features from the measured signals. The real data is used to demonstrate the capability of this
system in valve cavitation detection. The results show the effectiveness of the extracted features
from the acquired signals in classification of the valve condition.
2. Test facility

The test valves are the inflow valves for gauging well which used in wide area water works
pipeline networks. These valves are installed horizontally at circular pipe with a diameter of
1000mm and located at 2 km away from upstream pressurization station. The pipe pressure at
valve upstream is 0.245MPa for valve shutdown condition. Table 1 shows the flow rate and
pressure according to the valve opening condition. The schematic diagram of a butterfly valve
under investigation is shown in Fig. 2. The valve body is stroked by an electric motor-driven
diaphragm type actuator. A butterfly valve is a quarter-turn valve in which a disc is rotated on a
shaft so that the disc seats on a ring in the valve body. Usually the valve seat is an elastomer
bonded or fastened either to the vane or to the body. The vane protrudes into the adjacent piping
when in the open position. The valve can be actuated with a simple lever attached to the plug
shaft. In service, the control range for the vane angle is about 20–60�:
3. Data acquisition and feature extraction

3.1. Data acquisition

Two accelerometers were directly mounted vertically and horizontally at the valve body to
measure the vibration signals at various valve opening from 20% to 60%. Seventy continuous
measurements were recorded for 5min for each condition. The maximum acquisition frequency
was 10 kHz and the sampling number was 16384. A mobile DSP analyzer was used to perform the
data acquisition and the data were stored in a notebook computer. Fig. 3 shows frequency
Table 1

Flow rate and pressure according to valve opening

Valve opening (%) Flow rate (m3/min) Pressure (MPa)

10 642 0.240

20 2981 0.229

30 4204 0.178

60 6542 0.084
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Fig. 2. Cross-sectional view of a butterfly valve.

Fig. 3. Frequency spectrum according to valve opening. (a) Vertical direction; (b) horizontal direction.

B.-S. Yang et al. / Journal of Sound and Vibration 287 (2005) 25–43 29



ARTICLE IN PRESS

B.-S. Yang et al. / Journal of Sound and Vibration 287 (2005) 25–4330
spectrums of the raw vibration signals collected from the valve body for different valve opening.
In Fig. 3, one can observe the emergence of peaks of high-frequency structural resonance. The
center of frequency distribution is almost constant about 2.2 kHz vertically and 3.5 kHz
horizontally from normal state to small opening conditions. When the cavitation occurs, the
fluctuating pressure is directly applied to the valve body due to sudden implode of the bubble. As
the liquid passes through in vertical direction, the amplitude of vertical direction is larger than
that of horizontal direction. The magnitude of frequency spectrum tends to increase dramatically
when the cavitation occurs due to the decrease of the valve opening from 60% to 20%. However,
it is difficult to differentiate the vibration energy change from spectrum. The energy spectrum is
distributed in a wide range from 100Hz to 8 kHz for the vibration signals collected from the valve
body. From the time series waveform, no conspicuous difference exists among the different valve
openings. There is a need to come up with a feature extraction method to classify them.

3.2. Statistical feature extraction

Although the time series data contain abundant feature information, the important part cannot
be shown intuitively, and much unnecessary information is also contained. Therefore, the feature
extraction is essential for effective estimation of valve conditions. Several statistical parameters,
calculated in the time domain, are generally used to define average properties of acquired data.
Many of these features are based on moments and therefore the method of estimating these and
their relationship with the distribution of the random variable. In most cases, the probability
density function (pdf) can be decomposed into its constituent moments. If a change in condition
causes a change in the pdf of the signal then the moments may also change therefore monitoring
these can provide diagnostic information.
In this paper, the four basic parameters, mean value m; standard deviation s; kurtosis k and

shape factor s, are used as the statistical feature. For a given data set xi; i ¼ 1; . . . ;N; these are
defined as follows:

m ¼
1

N

XN

i¼1

xi; (1)

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðxi � mÞ2

vuut ; (2)

k ¼

1
N

PN
i¼1 ðxi � mÞ4

s4
; (3)

s ¼
s
m
; (4)

where N is the number of the data points.
The kurtosis gives an indication of the proportion of samples that deviate from the mean by a

small value compared to those which deviate by a large value. The kurtosis is determined not by
the magnitude of the waveform but by the shape of the waveform. It can be either positive or
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negative, and is very close to unity for a normal distribution. Random variables that have a
negative kurtosis are called subgaussian, and those with positive kurtosis are called supergaussian.
Supergaussian variables have typically a spiky pdf with heavy tails, i.e. the pdf is relatively large at
zero and large values of the variable, while being small for intermediate values. On the other hand,
subgaussian variables have typically flat pdf, which is rather constant near zero, and very small for
larger values of the variable. The zero mean Gaussian distributed variable has a kurtosis of 3.
These statistical parameters may be used to perform a quick check of the changes in the statistical
behavior of a signal [12]. Figs. 4 and 5 show plots of some of these features extracted from the
vibration acceleration signals. At the valve opening of 60% where values of mean, root mean
square (rms) and shape factor are very low, kurtosis has large deviation. Cavitation does not
occur in this condition. For the valve opening of 50%, these values rise up and kurtosis
approaches to 3. This means the cavitation inception occurs. For 40% and less, shape factor is
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Fig. 4. Feature characteristics according to valve opening for vertical direction.
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Fig. 5. Feature characteristics according to valve opening for horizontal direction.
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rapidly increased and kurtosis is a constant of 3, cavitation appears at the whole valve edge, that
is, supercavitation begins from valve opening of 40% [13].
4. Support vector machines (SVMs)

For detailed tutorials on the subject the reader can refer to Refs. [4,6,7,14] and references cited
therein. In this section a brief outline of the method will be described. The SVM attempts to create
a line or hyperplane between two sets of data for classification. In a 2D situation, the action of the
SVM can be explained easily without any loss of generality. Fig. 6 shows how to classify a series of
points into two different classes of data, class A (circles) and class B (squares). The SVM attempts
to place a linear boundary represented by a solid line between the two different classes and orients
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Fig. 6. An example of classification of two classes by SVM.
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it in such a way that the margin represented by dotted lines is maximized. The SVM tries to orient
the boundary such that the distance between the boundary and the nearest data point in each class
is maximal. The boundary is then placed in the middle of this margin between the two points. The
nearest data points are used to define the margins and are known as support vectors (SVs)
represented by gray circle and square. Once the SVs are selected, the rest of the feature set can be
discarded, since the SVs have all the necessary information for the classifier [10].
Let ðxi; yiÞ; with i ¼ 1; . . . ;N; be a training example set S; each example xi 2 RN belongs to a

class by yi 2 f�1; 1g: The goal is to define a hyperplane which divides S, such that all the points
with the same label are on the same side of the hyperplane while maximizing the distance between
the two classes A, B and the hyperplane. The boundary can be expressed as follows:

w 	 x þ b ¼ 0; w 2 RN ; b 2 R; (5)

where the vector w defines the boundary, x is the input vector of dimension N and b is a scalar
threshold. At the margins, where the SVs are located, the equations for classes A and B,
respectively, are as follows:

w 	 x þ b ¼ 1; w 	 x þ b ¼ �1: (6)

As SVs correspond to the extremities of the data for a given class, the following decision
function can be used to classify any data point in either class A or B:

f ðxÞ ¼ signðw 	 x þ bÞ: (7)

The optimal hyperplane separating the data can be obtained as a solution to the following
optimization problem [15]:
Minimize

tðwÞ ¼ 1=2kwk2 (8)
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subject to

yiðw 	 xi þ bÞX1; i ¼ 1; 2; . . . ;N; (9)

where N is the number of training sets.
However, if the only possibility to access the feature space is via dot products computed by the

kernel, we cannot solve Eq. (8) directly since w lies in that feature space. But it turns out that we
can get rid of the explicit usage of w by forming the dual optimization problem [16]. Introducing
Lagrange multipliers aiX0; i ¼ 1; 2; . . . ;N; one for each of the constraints in Eq. (9), we get the
following Lagrangian:

Lðw; b; aÞ ¼
1

2
kwk2 �

XN

i¼1

aiyiðw 	 xi � bÞ þ
XN

i¼1

ai: (10)

The task is to minimize Eq. (10) with respect to w and b, and to maximize it with respect to ai:
At the optimal point, we have the following saddle point equations:

qL

qw
¼ 0;

qL

qb
¼ 0; (11)

which translate into

w ¼
XN

i¼1

aiyixi;
XN

i¼1

aiyi ¼ 0: (12)

From the first equation of Eq. (12), we find that w is contained in the subspace spanned
by the xi: By substituting Eq. (12) into Eq. (10), we get the dual quadratic optimization
problem:
Maximize

LDðaÞ ¼
XN

i¼1

ai �
1

2

XN

i;j

aiajyiyjxi 	 xj (13)

Subject to

aiX0; i ¼ 1; 2; . . . ;N; (14)

XN

i¼1

aiyi ¼ 0: (15)

Thus, by solving the dual optimization problem, one obtains the coefficients ai which is
required to express the w to solves Eq. (8). This leads to the nonlinear decision function

f ðxÞ ¼ sign
XN

i¼1

aiyiðxi 	 xÞ þ b

 !
: (16)
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Fig. 7. Transformation to linear feature space from nonlinear input space.
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In cases where the linear boundary in the input spaces are not enough to separate the two
classes properly, it is possible to create a hyperplane that allows a linear separation in the higher
dimension. In SVMs, this is achieved through the use of a transformation FðxÞ that converts the
data from an N-dimensional input space to Q-dimensional feature space:

s ¼ FðxÞ; (17)

where x 2 RN and s 2 RQ:
Fig. 7 shows the transformation from input space to feature space where the nonlinear

boundary has been transformed into a linear boundary in feature space. Substituting the
transformation Eq. (17) in Eq. (7) gives the decision function as

f ðxÞ ¼ sign
XN

i¼1

aiyiðFðxÞ 	 FðxiÞÞ þ b

 !
: (18)

A kernel function Kðx; yÞ ¼ FðxÞ 	 FðyÞ is used to perform the transformation into higher-
dimensional feature space. The basic form of SVM is obtained after substituting the kernel
function in the decision function equation (18) as follows:

f ðxÞ ¼ sign
XN

i¼1

aiyiKðx;xiÞ þ b

 !
: (19)

Any function that satisfies Mercer’s theorem [4] can be used as a kernel function to compute a
dot product in feature space. There are different kernel functions used in SVMs, such as linear,
polynomial, Gaussian RBF. The selection of an appropriate kernel function is important, since
the kernel function defines the feature space in which the training set examples will be classified.
The definition of legitimate kernel function is given by Mercer’s theorem: The function must be
continuous and positive definite. In this work, linear, polynomial, w2 and Gaussian RBF kernel
functions were evaluated and formulated as shown in Table 2.
In Table 2, d is the degree of the polynomial. s denotes the width of the RBF kernel parameter

and can be determined in general by an iterative process selecting an optimum value based on the
full feature set [9]. This kernel is also well accepted for constructing SVMs and provides excellent
results for real-world applications [17].
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Table 2

Formulation for used kernel functions

Kernel K(x, y)

Linear x 	 y

Polynomial (x 	 y þ 1Þd

Gaussian RBF expf�ðkx � yk2=2s2Þg
w2 ðx � yÞ2=ðx þ yÞ
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5. Sequential minimal optimization (SMO) algorithm

To solve the SVM problem one has to solve the quadratic programming (QP) problem of Eq.
(13) under the constraints Eqs. (14) and (15). Vapnik [18] describes a method which used the
projected conjugate gradient algorithm to solve the SVM-QP problem, which has been known as
‘‘chunking’’. The chunking algorithm uses the fact that the value of the quadratic form is the same
if you remove the rows and columns of the matrix that corresponds to zero Lagrange multipliers.
Therefore, chunking seriously reduces the size of the matrix from the number of training examples
squared to approximately the number of non-zero Lagrange multipliers squared. However,
chunking still cannot handle large-scale training problems, since even this reduced matrix cannot
fit into memory [19]. Osuna et al. [20] proved a theorem which suggests a whole new set of QP
algorithms for SVMs. The theorem proves that the large QP problem can be broken down into a
series of smaller QP sub-problems. Sequential minimal optimization (SMO) proposed by Platt [21]
is a simple algorithm that can be used to solve the SVM-QP problem without any additional
matrix storage and without using the numerical QP optimization steps. This method decomposes
the overall QP problem into QP sub-problems using the Osuna’s theorem to ensure convergence.
In this paper the SMO is used as a solver and detail descriptions can be found in Platt [21], Smola
and Schölkopf [22], Burges [7] and Keerthi and Shevade [23].
In order to solve the two Lagrange multipliers a1; a2; SMO first computes the constraints on

these multipliers and then solves for the constrained minimum. For convenience, all quantities
that refer to the first multiplier will have a subscript 1, while all quantities that refer to the second
multiplier will have a subscript 2. The new values of these multipliers must lie on a line in (a1; a2)
space, and in the box defined by 0pa1; a2pC:

a1y1 þ a2y2 ¼ aold1 y1 þ aold2 y2 ¼ constant: (20)

Without loss of generality, the algorithm first computes the second Lagrange multipliers anew2

and successively uses it to obtain anew1 : The box constraint 0pa1; a2pC; together with the linear
equality constraint Saiyi ¼ 0; provides a more restrictive constraint on the feasible values for anew2 :
The boundary of feasible region for a2 can be applied as follows:

If y1ay2; L ¼ maxð0; aold2 � aold1 Þ; H ¼ minðC;C þ aold2 � aold1 Þ;

If y1 ¼ y2; L ¼ maxð0; aold1 þ aold2 � CÞ; H ¼ minðC;C þ aold1 þ aold2 Þ: (21)
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The second derivative of the objective function along the diagonal line can be expressed as

Z ¼ Kðx1; x1Þ þ Kðx2;x2Þ � 2Kðx1;x2Þ: (22)

Under normal circumstances, the objective function will be positive definite, there will be a
minimum along the direction of the linear equality constraint, and Z will be greater than zero. In
this case, SMO computes the minimum along the direction of the constraint:

anew2 ¼ aold2 þ
y2ðE

old
1 � Eold

2 Þ

Z
; (23)

where Ei is the prediction error on the ith training example. As a next step, the constrained
minimum is found by clipping the unconstrained minimum to the ends of the line segment:

anew;clipped2 ¼

H if anew2 XH;

anew2 if Loanew2 oH;

L if anew2 pL:

8><
>: (24)

Now, let s ¼ y1y2: The value of anew1 is computed from the new anew2 :

anew1 ¼ aold1 þ sðaold2 � anew2 Þ: (25)

Solving Eq. (13) for the Lagrange multipliers does not determine the threshold b of the SVM, so
b must be computed separately [21]. The following threshold b1; b2 are valid when the new a1; a2
are not at the each bounds, because it forces the output of the SVM to be y1; y2 when the input is
x1; x2 respectively:

b1 ¼ E1 þ y1ða
new
1 � aold1 ÞKðx1; x1Þ þ y2ða

new;clipped
2 � aold2 ÞKðx1;x2Þ þ bold;

b2 ¼ E2 þ y1ða
new
1 � aold1 ÞKðx1; x2Þ þ y2ða

new;clipped
2 � aold2 ÞKðx2;x2Þ þ bold:

When both b1 and b2 are valid, they are equal. When both new Lagrange multipliers are at
bound and if L is not equal to H, then the interval between b1 and b2 are all thresholds that are
consistent with the Karush–Kuhn–Tucker conditions which are necessary and sufficient
conditions for an optimal point of a positive definite QP problem [7]. In this case, SMO chooses
the threshold to be halfway between b1 and b2 [19].
6. Condition classification of butterfly valves

Fig. 8 shows the flow chart of the proposed procedure for detecting the cavitation of butterfly
valve. Training of the SVM is carried out using the Platt’s SMO algorithm. Both constant width
RBF kernel, where the width s is found by iteration, and the averaged width RBF kernel [9] is
used as a kernel function. Types of SVM kernel function are used to compare the classification
performance. The statistical features, namely, mean, standard deviation, shape factor and kurtosis
are used to distinguish between normal (non-cavitating) and cavitating valve. Sequentially, it
provides input vectors of SVM and SOFM [24,25] for training. We separate the total data set of
350 in a training data set of 100 (cavitation: 60, non-cavitation: 40) and a test data set of 250



ARTICLE IN PRESS

Valve's Body with Sensors

Signal Conditioning and Data Acquisition

Feature Extraction
(Mean, RMS, SF, Kurtosis)

Training Data Set Test Data Set

Training Process
(SMO algorithm)

Composition of SVs DB
(SMO Output)

Classification Process
(SVM algorithm)

Classify

Cavitation Non-Cavitation

Fig. 8. Flow chart of classification system.

B.-S. Yang et al. / Journal of Sound and Vibration 287 (2005) 25–4338
(cavitation: 150, non-cavitation: 100) as shown in Table 3. Thus, the size of training and test data
is 100, 250 respectively.
The selection of RBF kernel width s for good classification performance is one of the major

issues in SVMs. The kernel width determines the radius of the hypersphere enclosing part of the
data as a classifier boundary in a multidimensional feature spaces. If the value is too small, the
enclosed feature space is also be very small leaving a significant part of the data that may lead to
unsatisfactory classification. Also a very large value signifies a large enclosed feature space leading
to an overlap between classes and possible misclassification [10]. An iterative process selecting an
optimum value based on the full feature set determines the width of the Gaussian RBF kernel s:
Fig. 9 shows the influences of s on the classification rate and the number of SVs. It can be seen
that when s takes a small value (e.g., s ¼ 0:1), testing error rate is large (horizontal 7.6%, vertical
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Table 3

Composition for training and test data

Condition Valve opening (%) No. of data

Training data Cavitation 20 20

30 20

40 20

Non-cavitation 50 20

60 20

Test data Cavitation 20 50

30 50

40 50

Non-cavitation 50 50

60 50
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Fig. 9. Estimation of RBF parameter.
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29.6%). Then, the testing error rate decreases with increment of s: The number of SVs decreases
with increment of s and remains a minimum value of 3 during a certain range of s (i.e., horizontal
61.6–97, vertical 52.9–95). Again, it tends to increase as s continues with increment. The number
of SVs can be considered as an indicator for the generalization ability of the SVM and also be
used to give an upper bound of the generalization error of the hard margin SVM. The fewer the
number of SVs the lower the upper bound of the generalization error [26,17]. From Fig. 9, an
optimum value for best performance is s ¼ 52:9; 61.1 for horizontal and vertical directions
respectively, while the number of SVs is all 3 for the two directions. Thus these values are selected
for further experiments.
Another method for determining the width using the standard deviation was proposed by Jack

and Nadi [9]. This method is to calculate the standard deviation of all the members of a given class
for each feature in the input vector and determines an averaged value by taking the norm of vector
formed from the individual standard deviations. Tables 4 and 5 illustrate the standard deviations
of the input features and its averaged values for horizontal and vertical directions. As the
distribution of each class is assumed Gaussian in nature, the averaged value for cavitation
condition with non-Gaussian distribution become very large. This averaged value also used
directly in Eq. (19).
The performance of SVMs and SOFM are shown in Table 6. In Table 6, we have listed the

classification rate, RBF kernel width used and the number of SVs for training and test. The
classification rate (%) is determined by the ratio of correct classifications on the whole training or
test set, respectively. The averaged width SVM and constant width SVM with optimized value
from Fig. 9 are the most classification rate, with a best training and test performance of all 100%
for horizontal and vertical directions. But, the constant width SVM optimized has a smaller
number of SVs than for averaged width SVM. The fewer the number of SVs the lower the upper
Table 4

Standard deviations of the input features for horizontal direction

Class Standard deviation Averaged value

Mean rms Shape factor Kurtosis

Cavitation 0.002 0.176 4.867 0.116 1.290

Non-cavitation 0.016 0.044 5.248 54.185 14.873

Mean of standard deviation 0.009 0.110 5.056 27.150 8.082

Table 5

Standard deviations of the input features for vertical direction

Class Standard deviation Averaged value

Mean rms Shape factor Kurtosis

Cavitation 0.001 0.320 10.939 0.076 2.834

Non-cavitation 0.013 0.084 4.692 38.918 10.927

Mean of standard deviation 0.007 0.202 7.815 19.497 6.880
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Table 6

Performance comparisons of classifiers

Classifier Direction Classification rate (%) RBF kernel width Number of SVs

Training Test

SVM (average width) Horizontal 100 100 8.08 17

Vertical 100 100 6.88 19

SVM (constant width) Horizontal 100 100 52.9 3 (optimum)

Vertical 100 100 61.1 3 (optimum)

Horizontal 100 99.6 1.0 37

Vertical 100 97.6 1.0 43

SOFM Horizontal 100 87.2 — —

Vertical 100 84.8 — —

Table 7

Classification rate and number of SVs according to different kernel functions

Kernel Classification rate (%) Number of SVs

Training Test

Horizontal Vertical Horizontal Vertical Horizontal Vertical

Linear 100 100 100 100 2 2

Polynomial (d ¼ 2) 97 100 99.6 100 2 2

Gaussian RBF 100 100 100 100 3 2

w2 70 100 86 100 30 2
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bound of the generalization error [17]. The number of SVs can be considered as an indicator for
the generalization of the SVM. The SOFM achieves all 100% on training set and 87.2% and
84.8% on the test set for horizontal and vertical directions, respectively. These classification errors
are due to the misclassification of cavitation data, i.e. some cavitation data for the valve opening
of 20% were classified as those for no-condition condition.
Since it is not possible to determine a priori which kernel function works best for which data

set, considerable time is spent on trying different kernel functions. However, it has to be chosen
carefully since an inappropriate kernel can lead to poor performance. The kernels investigated
were borrowed from the pattern recognition literature as shown in Table 2 [14,27]. The
classification performance of SVMs using different kernel functions is summarized in Table 7. The
order of polynomial kernel function is 2. The classification results show that the performance of
linear and RBF kernel functions is the best among the four types of kernels.
7. Conclusions

This study presents a novel scheme for cavitation detection of butterfly valves used in large
pumping stations based on two classifiers, SVM and SOFM. The stationary features of vibration
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acceleration signals are extracted from statistical moments. The classifiers are trained, and then
classify normal (non-cavitation) and cavitation conditions of valves. The test results proved that
the trained classifier has the capability to detect the cavitation. The classification accuracy of
SVMs was better than that of SOFM and offer 100% success rate both for training sets and test
sets. This system can provide the potential use for real-time implementation leading to possible
development of an automated valve condition monitoring and diagnostic system. Also, this is vital
to a valve monitoring strategy since it can be used to detect problems and assist in the timely
scheduling of repairs to the valve, before a severe failure occurs.
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